Beta 4 integrin expression in myelinating Schwann cells is polarized, developmentally regulated and axonally dependent.

نویسندگان

  • M L Feltri
  • S S Scherer
  • R Nemni
  • J Kamholz
  • H Vogelbacker
  • M O Scott
  • N Canal
  • V Quaranta
  • L Wrabetz
چکیده

In developing and regenerating peripheral nerve, Schwann cells interact with axons and extracellular matrix in order to ensheath and myelinate axons. Both of these interactions are likely to be mediated by adhesion molecules, including integrins, which mediate cell-cell and cell-extracellular matrix interactions. Recently, the beta 4 integrin subunit was reported to be expressed by Schwann cells in peripheral nerve. We have examined the expression of beta 4, beta 1 and their common heterodimeric partner, the alpha 6 integrin subunit, in developing and regenerating rat peripheral nerve. beta 4 and alpha 6 are enriched in peripheral nerve and they co-localize at the abaxonal surface of myelinating Schwann cells, opposite the Schwann cell basal lamina, which contains possible ligands of alpha 6 beta 4. In contrast, beta 4 and alpha 6 are expressed in a different pattern in non-myelinating Schwann cells. The level of beta 4, but not alpha 6 or beta 1 mRNAs, increases progressively in developing nerves, reaching a peak in adult nerves well after the peak of the myelin-specific mRNAs. After axotomy, the expression of beta 4 mRNA and protein, but not alpha 6 or beta 1 mRNAs, fall rapidly but subsequently are reinduced by regenerating axons. Similarly, in cultured Schwann cells, the expression of beta 4 mRNA, but not alpha 6 mRNA, is significantly modulated by forskolin, a drug that elevates cAMP and mimics some of the effects of axonal contact. beta 4 integrin expression in Schwann cells, therefore, is regulated by Schwann cell-axon interactions, which are known to be critical in determining the Schwann cell phenotype. Furthermore, the polarized expression of alpha 6 beta 4 to the abaxonal surface of myelinating Schwann cells suggests that alpha 6 beta 4 may mediate in part the morphological changes required of Schwann cells in the process of myelination in the peripheral nervous system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell death in the Schwann cell lineage and its regulation by neuregulin.

The development of Schwann cells, the myelin-forming glial cells of the vertebrate peripheral nervous system, involves a neonatal phase of proliferation in which cells migrate along and segregate newly formed axons. Withdrawal from the cell cycle, around postnatal days 2-4 in rodents, initiates terminal differentiation to the myelinating state. During this time, Schwann cell number is subject t...

متن کامل

Axonal regulation of Schwann cell integrin expression suggests a role for alpha 6 beta 4 in myelination

Ensheathment and myelination of axons by Schwann cells in the peripheral nervous system requires contact with a basal lamina. The molecular mechanism(s) by which the basal lamina promotes myelination is not known but is likely to reflect the activity of integrins expressed by Schwann cells. To initiate studies on the role of integrins during myelination, we characterized the expression of two i...

متن کامل

Expression of recombinant myelin-associated glycoprotein in primary Schwann cells promotes the initial investment of axons by myelinating Schwann cells

Myelin-associated glycoprotein (MAG) is an integral membrane protein expressed by myelinating glial cells that occurs in two developmentally regulated forms with different carboxyterminal cytoplasmic domains (L-MAG and S-MAG). To investigate the role of MAG in myelination a recombinant retrovirus was used to introduce a MAG cDNA (L-MAG form) into primary Schwann cells in vitro. Stably infected ...

متن کامل

Periaxin expression in myelinating Schwann cells: modulation by axon-glial interactions and polarized localization during development.

Periaxin is a newly described protein that is expressed exclusively by myelinating Schwann cells. In developing nerves, periaxin is first detected as Schwann cells ensheathe axons, prior to the appearance of the proteins that characterize the myelin sheath. Periaxin is initially concentrated in the adaxonal membrane (apposing the axon) but, during development, as myelin sheaths mature, periaxin...

متن کامل

Expression of laminin receptors in schwann cell differentiation: evidence for distinct roles.

Schwann cells require laminin-2 throughout nerve development, because mutations in the alpha2 chain in dystrophic mice interfere with sorting of axons before birth and formation of myelin internodes after birth. Mature Schwann cells express several laminin receptors, but their expression and roles in development are poorly understood. Therefore, we correlated the onset of myelination in nerve a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 120 5  شماره 

صفحات  -

تاریخ انتشار 1994